A Micro-Macro Decomposition-Based Asymptotic-Preserving Scheme for the Multispecies Boltzmann Equation

نویسندگان

  • Shi Jin
  • Yingzhe Shi
چکیده

In this paper we extend the micro-macro decomposition based asymptotic-preserving scheme developed in [3] for the single species Boltzmann equation to the multispecies problems. An asymptoticpreserving scheme for kinetic equation is very efficient in the fluid regime where the Knudsen number is small and the collision term becomes stiff. It allows coarse (independent of Knudsen number) mesh size and large time step in the fluid regime. The difficulty associated with multispecies problems is that there are no local conservation laws for each species, resulting in extra stiff nonlinear source terms that need to be discretized properly in order to 1) avoid Newton type solvers for nonlinear algebraic systems and 2) to be asymptotic-preserving. We show that these extra nonlinear source terms can be solved using only linear system solvers, and the scheme preserves the correct Euler and Navier-Stokes limits. Numerical examples are used to demonstrate the efficiency and applicability of the schemes for both Euler and Navier-Stokes regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation

An asymptotic preserving scheme is efficient in solving multiscale problems where both kinetic and hydrodynamic regimes co-exist. In this paper we extend the BGK-penalization based asymptotic preserving scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation, to its multispecies counterpart. For the multispecies Boltzmann equation the new difficulties emerge du...

متن کامل

A BGK-Penalization-Based Asymptotic-Preserving Scheme for the Multispecies Boltzmann Equation

An asymptotic-preserving (AP) scheme is efficient in solving multiscale problems where kinetic and hydrodynamic regimes coexist. In this article, we extend the BGK-penalization-based AP scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation (Filbet and Jin, J Comput Phys 229 (2010) 7625–7648), to its multispecies counterpart. For the multispecies Boltzmann equ...

متن کامل

An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

In this paper we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. This scheme is uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro-macro decomposition which leads to an equival...

متن کامل

Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method

In this paper we study the stochastic Galerkin approximation for the linear transport equation with random inputs and diffusive scaling. We first establish uniform (in the Knudsen number) stability results in the random space for the transport equation with uncertain scattering coefficients and then prove the uniform spectral convergence (and consequently the sharp stochastic asymptotic-preserv...

متن کامل

An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits

In this work, we extend the micro-macro decomposition based numerical schemes developed in [3] to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic (equilibrium) part with the remainder part. A suitable discretization of this micro-macro model enables to derive an asympt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010